新增批量大小和幅值放缩设置,优化J峰预测功能
This commit is contained in:
@ -338,7 +338,8 @@ class MainWindow_detect_Jpeak(QMainWindow):
|
||||
# 预测峰值
|
||||
PublicFunc.progressbar_update(self, 2, 3, Constants.DETECT_JPEAK_PREDICTING_PEAK, 10)
|
||||
self.model.selected_model = Config["DetectMethod"]
|
||||
result = self.data.predict_Jpeak(self.model)
|
||||
scale = self.ui.spinBox_scaleValue.value() if self.ui.checkBox_scaleEnable.isChecked() else 0
|
||||
result = self.data.predict_Jpeak(self.model, batch_size=int(self.ui.comboBox_batchSize.currentText()), scale=scale)
|
||||
if not result.status:
|
||||
PublicFunc.text_output(self.ui, "(2/3)" + result.info, Constants.TIPS_TYPE_ERROR)
|
||||
PublicFunc.msgbox_output(self, result.info, Constants.MSGBOX_TYPE_ERROR)
|
||||
@ -469,7 +470,7 @@ class Data:
|
||||
return Result().failure(info=Constants.PREPROCESS_FAILURE +
|
||||
Constants.FAILURE_REASON["Preprocess_Exception"] + "\n" + format_exc())
|
||||
|
||||
def predict_Jpeak(self, model):
|
||||
def predict_Jpeak(self, model, batch_size=0, scale=0):
|
||||
if not (Path(model.model_folder_path) / Path(model.selected_model)).exists():
|
||||
return Result().failure(info=Constants.DETECT_JPEAK_PREDICT_FAILURE +
|
||||
Constants.FAILURE_REASON["Model_File_Not_Exist"])
|
||||
@ -489,7 +490,9 @@ class Data:
|
||||
Config["IntervalHigh"],
|
||||
Config["IntervalLow"],
|
||||
Config["PeaksValue"],
|
||||
Config["UseCPU"])
|
||||
Config["UseCPU"],
|
||||
batch_size,
|
||||
scale)
|
||||
except Exception as e:
|
||||
return Result().failure(info=Constants.DETECT_JPEAK_PREDICT_FAILURE +
|
||||
Constants.FAILURE_REASON["Predict_Exception"] + "\n" + format_exc())
|
||||
|
||||
Reference in New Issue
Block a user